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ABSTRACT
The assumption of “no unmeasured confounders” is a critical but unverifiable assumption required for causal inference yet quan-
titative sensitivity analyses to assess robustness of real-world evidence remains under-utilized. The lack of use is likely in part due 
to complexity of implementation and often specific and restrictive data requirements for application of each method. With the 
advent of methods that are broadly applicable in that they do not require identification of a specific unmeasured confounder—
along with publicly available code for implementation—roadblocks toward broader use of sensitivity analyses are decreasing. To 
spur greater application, here we offer a good practice guidance to address the potential for unmeasured confounding at both the 
design and analysis stages, including framing questions and an analytic toolbox for researchers. The questions at the design stage 
guide the researcher through steps evaluating the potential robustness of the design while encouraging gathering of additional 
data to reduce uncertainty due to potential confounding. At the analysis stage, the questions guide quantifying the robustness of 
the observed result and providing researchers with a clearer indication of the strength of their conclusions. We demonstrate the 
application of this guidance using simulated data based on an observational fibromyalgia study, applying multiple methods from 
our analytic toolbox for illustration purposes.

1   |   Introduction

The growing availability of real-world data (RWD) has driven 
the use of real-world evidence (RWE) in the drug development 
and commercialization process, from discovery to phase IV re-
search and market access. This has been spurred by the 21st 
Century Cures Act and subsequent efforts considering the use 

of RWE to inform regulatory decisions regarding the effective-
ness and safety of medical products. However, the promise of 
timely and credible RWE to inform regulators and healthcare 
decision makers is challenged by the need to address potential 
biases inherent in non-randomized research. This is especially 
challenging for evidence derived from comparative observa-
tional studies—in which researchers often use causal inference 
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methods to compare outcomes between 2 or more interventions 
[1]. This particular subset of RWE is the primary focus of this 
manuscript.

Generating credible estimates of causal treatment effects from 
observational studies requires making four key assumptions: 
the stable unit treatment value assumption (SUTVA), positiv-
ity, correct statistical modeling, and strong ignorability (or “no 
unmeasured confounders”). The “no unmeasured confound-
ers” assumption is not verifiable and is a major roadblock 
to the acceptance of such evidence for healthcare decision 
making [2, 3]. An unmeasured confounder is a variable that 
is related to both the treatment and the outcome—yet is not 
available in the data set for analysis [4, 5]. Unmeasured con-
founding can be problematic, even reversing the direction and 
significance of  treatment effect estimates [6]. Despite this, 
common practice is simply to discuss potential for bias due to 
unmeasured confounders as a limitation without quantitative 
sensitivity analyses [7, 8]. Best practice guidance for RWE, 
produced by the International Society of Pharmacoeconomics 
and Outcomes Research, the International Society of 
Pharmaoepidemiolog and others [7, 9–11], emphasize the im-
portance of addressing unmeasured confounding but do not 
provide a roadmap for implementation. Similarly, study de-
sign good practices [12] do not address evaluation of robust-
ness after study design.

Several books/review articles [13–16] provide summaries includ-
ing the applicability and pros and cons of methods for address-
ing unmeasured confounding but are under-utilized for multiple 
reasons. First, many methods are complex and require custom 
programming for implementation. Second, many methods are 
only applicable in specific settings and not broadly applicable 
[15]. For instance, propensity score calibration requires a subsa-
mple of patients with data on the unmeasured confounder and 
the prior rate ratio requires outcome data in a time-period prior 
to when the exposure of interest started.

Recently, software to implement methods that are broadly ap-
plicable (requiring no knowledge of a specific unmeasured 
confounder or additional data) have become publicly available 
such as the R-packages TreatSens, Sensmakr, E-value, and 
Tipr. Researchers have proposed such methods as a first step 
for sensitivity analyses for comparative observational research 
[17–20]. Zhang and colleagues [18] developed a flowchart to help 
researchers navigate the options and produce sensitivity analy-
ses appropriate for their study. However, this has not undergone 
assessment via pilot studies and only addresses sensitivity at the 
analysis stage (not the design stage). Also, expanded analytical 
options are available since that time.

Building on the work of Zhang et al. [18], we propose a good 
practices guidance for both the design and analysis stages of 
comparative observational research, including guiding ques-
tions and a toolbox of methods to help researchers quantita-
tively address the potential for unmeasured confounding. 
We illustrate the use of the guidance using simulated data 
based on a prospective real-world study of fibromyalgia [21] 
(REFLECTIONS).

2   |   Sensitivity Analysis Guidance and Toolbox for 
Study Design and Analyses

2.1   |   Toolbox Overview

Prior to introducing the sensitivity analysis guidance and tool-
box in Sections  2.2 and 2.3, Table  1 provides background sta-
tistical details for methods in the toolbox and utilized in the 
example applications that follows. This includes three methods 
for tipping point analyses and benchmarking (E-value, Omitted 
Variables, Simulation Framework) along with approaches for 
adjusted analyses using internal or external data (Bayesian 
Regression, Control Variable Analysis). For notation across 
methods, Y represents the outcome, X the measured covariates, 
U the unmeasured covariates, and A the treatment.

2.2   |   Study Design Stage

The need for planning sensitivity analyses for potential bias be-
gins at the design stage of comparative observational research. 
Prior to developing a protocol, researchers should ensure the 
planned design and data will support a robust conclusion. 
Figure 1 provides a structured process to guide researchers to 
identify potential confounders, quantify the level of confound-
ing that would be problematic to generating robust findings, 
conduct a benchmarking exercise based on the expectations, 
and consider options to reduce uncertainty caused by poten-
tial unmeasured confounding. To assist with implementation, 
a toolbox of analytic methods is included. Study objectives and 
designs vary, but these questions are broadly applicable, such as 
for non-inferiority, superiority, and predictive study aims, while 
the application of the toolbox may differ.

Girman et al. [32] recommended directed acyclic graphs (DAGs) 
to guide pre-study feasibility assessment in comparative real-
world studies. Use of DAGs [33] at the design stage provides 
a structured approach to identify all known “common-cause 
confounders” (factors influencing both treatment selection 
and outcome)—measured or not—based on current evidence. 
Information to develop DAGs is obtained from sources such as 
clinical experts, prescriber surveys, literature reviews, and ex-
isting disease state data. Tools like DAGitty [34] can be utilized 
to develop or analyze DAGs. See Digitale et al. [35] for a recent 
tutorial while Ferguson et  al. [36] discuss recent approaches 
and challenges for building DAGs from prior information and 
Khuene et al. [37] provides an applied example in a causal infer-
ence setting. The simple DAG in Figure 2 for a single treatment 
decision point illustrates that bias from unmeasured confound-
ing is driven by two factors (after conditioning on X): (1) the 
strength of association between the unmeasured confounder U 
and treatment A; (2) the strength of association between the un-
measured confounder U and outcome Y.

Once potential unmeasured confounders are identified, re-
searchers need to make informed assumptions of the magni-
tude of the correlation between the unmeasured confounders 
and outcome and/or treatment (adjusted for other factors) and 
the expected treatment effect. The E-value and robustness 
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TABLE 1    |    Methods overview.

Method Description

E-value The E-value, representing the evidence for causality, is the minimum strength of confounding necessary 
on a risk ratio (RR) scale that an unmeasured confounder would need to have with both the treatment and 
outcome to explain away a specific observed treatment effect, conditional on the observed covariates [17].

For the technical derivation see VanderWeele, Ding, and Mather [22] where 
they show how the E-value is based on two parameters:

RRUY = max
(
maxuP(Y= 1 ∣A= 1,X= x,U=u)

minuP(Y= 1 ∣A= 1,X= x,U=u)
,
maxuP(Y= 1 ∣A= 0,X= x,U=u)

minuP(Y= 1 ∣A= 0,X= x,U=u)

)
 and

RRAU = maxu
P(U=u,A= 1,X= x)

P(U=u ∣A= 0,X= x)

RRUY  is the maximum effect that U can have on Y, conditional on X = x and RRAU 
is the maximum RR for the treatment A across possible levels of U.

For a binary outcome on a RR scale (also with a binary unmeasured confounder), 
the E-value for the point estimate can be computed as follows:

If RR ≥ 1: Evalue = RR +
√
RR(RR − 1)

If RR < 1: Evalue = 1

RR
+

√
1

RR

(
1

RR
− 1

)

The E-value for the confidence limit of interest (LL = Lower Limit; UL = Upper Limit) would be

If RR ≥ 1: Evalue =

�
LL+

√
LL(LL−1), if LL>1

1, if LL≤1.

If RR < 1: Evalue =

⎧⎪⎨⎪⎩

1

UL
+

�
1

UL

�
1

UL
−1

�
, if UL<1

1, if UL≥1.

It is recommended to report the E-value for both the point estimate and the 
confidence interval limit closest to the null—thus creating a measure of the strength 

of confounding needed to change any inferences from the study.
Extensions of the E-value for continuous, time to event, and odds ratio outcomes 

are available and implementation of the E-value can be conducted using 
multiple packages including the E-value R-package [23, 24].

Omitted 
variables

Cinelli and Hazlett proposed using the omitted variables framework with a partial R2 parameterization 
to develop a suite of tools to assess the impact of unmeasured confounding [19]. Beginning 

with an omitted variables framework, the desired regression model is assumed to be
Y = �X + �YU + �A + �

with outcome Y, covariates X (measured) and U (unmeasured), and treatment A. The analysis 
model, however, excludes the parameter U and Cinelli and Hazlett then compute the bias from the 

exclusion of U and parameterize the bias in terms of the proportion of variance explained (R2).

|bias| =
√

R2
Y∼U∣A,X

R2
A∼U∣X

1−R2
A∼U∣X

(
sd(Y¬X,A)
sd(A¬X)

)
,

where Y¬X,A is the variable Y after removing components linearly explained by X and A.
Consider a confounder U with equal association to the treatment and the outcome, then the Robustness 

Value, the minimum strength of association U would need with both the treatment and outcome 
to eliminate or change statistical inferences (reduce the estimated effect by 100 × q%), is

RVq = (0.5)
(√

f4q + 4f2q − f2q

)

where fq is the partial Cohen's f of the treatment with the outcome multiplied by the 
proportion of reduction q of the treatment coefficient deemed of interest.

Confounders that explain this proportion of the residual variance for both the treatment 
and the outcome are sufficiently strong to change the point estimate in problematic ways, 

while confounders with neither association greater than this proportion are not.
They propose using sensitivity contour plots with the partial R2 parameterization for benchmarking. 

Specifically, create a contour plot (see Section 3.2.2) of adjusted treatment effect estimates where the x-
axis is the partial R2 of the unmeasured confounder with treatment and the y-axis is the partial R2 of the 

confounder with outcome. One can then use the partial R2 values from the strongest measured confounder 
as a benchmark and assess on the contour plot whether an unmeasured confounder of similar strength (or 
2-times, 3-times, …) would make important changes to the point estimate and inferences from the study.

(Continues)
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Method Description

Simulation 
framework

Under the simulation-based framework for sensitivity analysis [25, 26], parametric models are posited for the 
treatment assignment conditional on observed confounders and outcome given treatment assignment and 
observed confounders. For instance, a linear regression model can be specified for a continuous outcome 
and the treatment assignment can be modeled under a logistic regression. Sensitivity parameters �Y  and 
�A are introduced to denote the association between the outcome and an unmeasured confounder and the 

treatment assignment and an unmeasured confounder, respectively. Finally, the unmeasured confounder is 
assumed to be binary with marginal proportion �U, with �U = 0.5 in the simulated example of Section 3. Let

Y ∣ X,A,U ∼ N
(
�X + �YU + �A, �2

),
A ∣ X,U ∼ Bernoulli

(
expit

(
�X + �AU

))
, and

U ∼ Bernoulli
(
�U

)
.

To conduct a tipping point analysis, a grid of values are specified for �Y  and �A. For each combination of (
�Y, �A

)
, an algorithm iterates between (1) re-estimating the parameters for the outcome 

(
�, �, �2

)
 given 

Y,X,A,U, �Y , (2) re-estimating the parameter for the treatment assignment (�) given A,X,U, �A, and 
(3) the conditional probability of Pr

(
U = 1|Y,A,X, �, �,� , �Y, �A

)
 to obtain an adjusted estimate of the 

treatment effect. The simulation-based sensitivity analysis framework can be implemented in R via the 
package treatsens. Contour plots with benchmarking are also recommended to evaluate the robustness 
of inferences from the study. The x and y-axis on the countour plot reflect different values of �Y  and �A, 

which are on the scale of regression coefficients in the outcome and treatment models, respectively.

Bayesian 
Regression

The Bayesian approach is similar to missing data approaches where information for the unmeasured 
confounder is used to develop a posterior distribution for the missing variables [6, 27, 28]. Treating the values 

of the unmeasured confounders as unknown parameters then allows them to be imputed into the model 
as a part of the MCMC algorithm. Estimation proceeds on the full data set (with the imputed values) where 

uncertainty is injected into the parameter estimates due to the missing data being a part of the iterative sampling 
scheme. Parametric models for both the unmeasured confounder and the response are typically used,

Y|A,X,U ∼ DY

(
�Y

)
,

U|A,X ∼ DU

(
�U

)
.

The means for U and Y are, for appropriate link functions, given as
F(U ∣ A,X) = �U0 + �A

U
X

G(Y ∣ A,X,U) = �Y0 + �A
Y
X + �YU.

If internal or external validation data are available, inference can proceed with non-informative priors 
for all parameters. In the absence of validation data, informative priors are required for �U0, �A

U
, and �Y

. The informative priors can be elicited either via independent normal priors for each of the parameters or a 
joint elicitation process using the conditional means prior approach [29]. The posterior distributions would 

rarely be of closed form, thus MCMC methods are typically used to perform estimation. The R-package 
unmconf is a user-friendly approach that can be used to fit these models via the JAGS software [30].

Control 
variable

Yang and Ding [31] developed a methodology that integrates a main observational data set with unmeasured 
confounders (U) and a smaller internal validation data set that provides additional information on these 

confounders. The Control Variable approach first computes an initial internal estimator ÂTE0 that adjusts 
for the known confounders and U, ensuring consistency but not guaranteed efficiency. The choices of the 

estimators can vary, e.g., inverse probability weighting, ANCOVA adjustment, augmented inverse probability 
weighting, and matching estimators. By adjusting for known confounders and U, ÂTE0 is consistent for the 

average treatment effect. However, it might not be efficient due to using the smaller internal validation data set.
Secondly, the Control Variable approach determines an error-prone estimator ÂTE

ep
 (where the 

superscript ep means “error-prone”) utilizing both the main and validation data sets adjusting for known 
confounders but not U. When the validation data set is a simple random sample of the main data set, the 
difference between the error-prone estimators ÂTE

ep

val − ÂTE
ep

main derived from both studies is consistent 
for zero. If this difference shares a strong correlation with the initial internal estimator for the ATE, 
ÂTE 0, it can be utilized as a control variate to improve the efficiency of the initial estimator. Thus, we 

call ÂTE
ep

val − ÂTE
ep

main the control variate. The final estimator, by incorporating the control variate
ÂTE = ÂTE 0 − Γ̂0cV̂

−1

c

(
ÂTE

ep

val − ÂTE
ep

main

)
,

is both consistent and more efficient than the initial estimator, where Γ̂ 0c is the estimated correlation between the 
initial estimator ÂTE0 and the control variate ÂTE

ep

val − ÂTE
ep

main, and V̂c is the estimated variance of the control 
variate. ÂTE is guaranteed to be no worse than ÂTE0 by borrowing the information from the control variate.

TABLE 1    |    (Continued)
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value (RV) are statistics that quantify what level of confound-
ing could produce the observed treatment effect when the true 
effect is zero. While the treatment effect is not known prior to 
the study, researchers can contemplate an expected treatment 
effect size, which can be used to compute a pre-study E-value 
or RV (for both the expected treatment effect and confidence 
limit of interest).

Once bounds are computed and potential unmeasured con-
founders identified, benchmarking exercises compare the ex-
pected strength of confounders (based on clinical expertise or 
existing data) to the identified bounds of concern. Even if no 
specific unmeasured confounder has been identified, there is 
still potential bias from unknown confounders. In such cases 
a measured confounder serves as a proxy in the benchmarking 
process. That is, researchers may hypothesize that unknown 
confounders are not stronger (by a specified multiple) than 
proven known confounders and can use the strongest known 
confounder as a conservative benchmark.

This exercise may raise or lessen concerns with unmeasured 
confounding. When unmeasured confounding could have a sig-
nificant impact on analyses then a discussion of options prior 
to moving forward with the study is warranted. While choices 
are situation dependent due to many factors, options include 
not conducting the study or at least the comparison piece of the 
study or obtaining additional information on the unmeasured 
confounder through alternative data collection approaches such 
as surveys, chart reviews or external data sources. Assuming 
the study continues, pre-specification of approaches to obtain 
additional information to reduce expected uncertainty from un-
measured confounding and how this information will be used 
in the analysis should be documented. In general, increasing the 
sample size of the study will not address the amount of bias in 
the treatment effect estimate. However, Fang et al. [38] note that 
while the expected effect size is fixed, the confidence limits vary 
with sample size. Thus, if the E-value or RV suggests that the 
study will lead to a point estimate that is arguably robust to plau-
sible degrees of confounding, but the relevant confidence limit is 
not, then sample size considerations are relevant.

2.3   |   Analysis Stage

After primary data analyses are completed, sensitivity analyses 
address how strong unmeasured confounding would need to be 
to change inferences. Figure 3 provides guidance and tools for 
quantitative sensitivity analyses to understand the robustness of 
the findings to potential unmeasured confounding.

As a general guidance, addressing the 1st two questions with 
tipping point and benchmarking analyses would be a mini-
mum sensitivity assessment in most research scenarios. To 
address “How strong would unmeasured confounding need 
to be to change inferences from the study?”, there are mul-
tiple tipping point analyses available including the E-value 
[17], omitted variables (including the RV and extremeRV) [19], 
simulation framework [25, 26] and array approach [39]. These 
methods are broadly applicable, given they require no knowl-
edge of any specific confounder and approximations allow ap-
plication for continuous, binary, and time to event outcomes. 
See Section 2.1 for some technical background information on 
these methods.

In addition to a single summary statistic such as the E-value or 
RV, we recommend contour plots for summarizing information 

FIGURE 1    |    Pre-study planning: Guiding questions and toolbox.

FIGURE 2    |    DAG summarizing measured and unmeasured 
confounding.
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from the tipping point analyses. Contour plots allow postulat-
ing different strengths of association (between the unmea-
sured confounder and treatment selection and between the 
unmeasured confounder and outcome) to examine the resulting 
change in the adjusted treatment effect or any change in statis-
tical inferences. They avoid the simplification of assuming an 
unmeasured confounder with the same level of influence on 
both the treatment and outcome and serve as a useful tool in 
the benchmarking analyses that follow. The different methods 
utilize different scales for measuring the associations with the 
unmeasured confounder (RR for the E-value, R2 for the omitted 
variables, and regression coefficient for the simulation frame-
work), but the concept is similar.

Once bounds are established for the strength of confounding that 
would change inferences, the plausibility of the existence of con-
founders of this strength should be considered. Benchmarking 
can be helpful to address the question. In benchmarking, re-
searchers postulate various plausible strengths of associations 
(between the unmeasured confounder and both outcome and 
treatment selection) based on expert knowledge or external infor-
mation (prior studies or other data sets) on a known unmeasured 
confounder or using data from measured covariates in the study 
when no unmeasured confounder has been identified. Contour 
plots can then be used to transparently visualize how treatment 
effect estimates or statistical inferences would change subject 
to any given benchmark. If the user finds that plausible bench-
mark values would not alter the research conclusion, this can be 

very informative. Alternatively, if researchers find confounding 
as strong as plausible benchmarks would overturn the research 
conclusions, then they know that confidence in the research con-
clusion is not warranted.

In some cases, sensitivity analysis only will reveal that we can-
not be certain to even the sign of the true effect. In such cases, it 
may be useful to seek out additional information from other data 
sources that would aid in benchmarking exercises. Alternatively, 
entirely different causal identification strategies such as instru-
mental variables [40] and exploiting information in negative con-
trols/outcomes [41, 42] may be more productive, depending on 
whether their alternative assumptions are defensible.

In cases where an unmeasured confounder U is identified 
and additional information regarding U is available, several 
approaches are available to assess whether inferences would 
change if U could be adjusted for in the analysis. Lash et al. 
[16] introduced a broad framework, quantitative bias analysis, 
which incorporate external information to estimate the poten-
tial impact of unmeasured confounders, as well as sensitiv-
ity analyses for missing responses, selection bias, exposure, 
outcome and covariate misclassification. The set of tools for 
incorporating additional information into sensitivity analyses 
is growing, though they are dependent on the type of infor-
mation that is available for the unmeasured confounder U. 
Several recent approaches for both internal and external in-
formation are described below.

FIGURE 3    |    Analysis stage guiding questions and toolbox.
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If information on the unmeasured confounder U is available 
from an internal subsample (a subset of the patients in the cur-
rent study), then missing data methods such as multiple impu-
tation and the Control Variable approach [31] (see Section 2.1) 
become feasible. Multiple imputation generates imputations of 
U based on the joint distribution of all confounders, treatment, 
and outcome under the missing at random assumption. For each 
imputation the treatment effect is re-estimated (using the im-
puted value of U) and estimates are pooled for a final estimate 
[43]. The Control Variable approach first computes an initial in-
ternal estimator that adjusts for the observed confounders and 
U within the subgroup where U is observed, which is consistent 
but not efficient. To improve efficiency a weighted estimator is 
obtained by combining information from the subset and the po-
tential error-prone full data set.

When information on an unmeasured confounder is available 
from data external to the current study, Bayesian methods 
are a useful tool as they are designed to incorporate multiple 
sources of information [27, 28]. As described in more detail in 
Section 2.1, the external information—such as measures of the 
relationship between U and treatment and/or outcome—can be 
incorporated into the treatment effect estimation through prior 
distributions for the parameters governing the unmeasured con-
founder. Zhang et al. [6] provide an example of using Bayesian 
modeling to incorporate external information on a missing con-
founder into a claims-database analysis and demonstrated that 
analyses without the known but unmeasured confounders was 
likely significantly biased.

Lastly, the contour plots produced by the omitted variables or 
simulation framework can be paired with any additional infor-
mation on U (whether internal or external) to provide an up-
dated treatment effect estimate. One simply needs to obtain or 
postulate the strengths of association of U with both treatment 
and outcome from the additional data source. Note that these 
methods utilize additional information on U to provide updated 
treatment effect estimates. When applied to a single “U” of con-
cern, this does not address other potential unmeasured con-
founders. However, contour plots (and the RV or E-value) can 
also be used to speculate about the strength of all confounding 
collectively. At any speculated values of the residual variance in 
the treatment and in the outcome that could be explained by all 
confounders collectively, the bias formulas describe the maxi-
mum bias due to such confounding.

3   |   Pilot Application Using Simulated Study Data 
on Fibromyalgia

We piloted the good practice guidance and toolbox using our 
simulated REFLECTIONS fibromyalgia study. REFLECTIONS 
was a prospective observational study [21] that enrolled 1700 
patients initiating a new treatment for fibromyalgia (new user 
design) and collected data longitudinally to compare 1-year pain 
severity outcomes (Brief Pain Inventory [BPI], null hypothesis of 
no treatment difference) in patients initiating opioid versus non-
opioid treatments [44]. To have an example with known levels 
of unmeasured confounding and known true treatment effect, 
we generated a simulated version of the REFLECTIONS data 
(N = 1000) with:

•	 The same set of baseline covariates with the same distribu-
tions and correlations as in the actual study;

•	 A newly created variable “U” which represents an unmea-
sured confounder;

•	 New treatment (Opioid or Non-Opioid) and outcome (pain 
severity) variables such that there was no true treatment ef-
fect and U was related to both treatment selection and out-
come with strengths similar to baseline BPI.

Details on the data generation process are presented in the 
Appendix  S1. To demonstrate the use of sensitivity analysis 
methods that leverage external data, we also generated a fibro-
myalgia disease registry data set with similar covariates and 
outcomes as in REFLECTIONS—but only with non-opioid 
treated patients.

3.1   |   Design Stage

3.1.1   |   Identify Measured and Unmeasured 
Confounders

Study design followed the analysis framework of Ho et al. [45] 
with details in the Appendix  S1. Following the principles in 
Figure 1, we first created a DAG to assess whether all known con-
founders were collected in the study (Figure  4). For simplicity, 
we focused on the relationships of each covariate with treatment 
selection and 1-year pain severity. While no known unmeasured 
confounders were identified, potential for unmeasured con-
founding bias still exists as the lack of known unmeasured con-
founders is not proof of no unmeasured confounding.

3.1.2   |   Assess Strength of Unmeasured Confounding

Prior evidence and clinical insight suggest that baseline pain se-
verity was likely the strongest confounder, meaning it is unlikely 
that unmeasured confounding from unknown sources would be 
stronger than confounding from baseline pain severity. Thus, 
baseline pain severity served as a conservative benchmark for po-
tential unknown confounding in the sensitivity analysis below.

To assess the robustness of the study design against unknown 
confounding benchmarked at the level of “baseline pain sever-
ity,” a pre-study E-value was computed. Based on the 0.25 ex-
pected treatment effect, a standard deviation of 1.2, and planned 
sample sizes of 200/400 per group, the E-values for the point 
estimate and lower confidence limit would be 1.82 and 1.31. The 
external registry RR for baseline pain severity with pain severity 
outcome was 3.1. Given this was greater than 1.31, the study 
design was considered not likely to produce RWE robust against 
unmeasured confounding at the level of strength of baseline 
pain severity.

3.1.3   |   Consider Additional Sources of Information 
for the Unmeasured Confounder

Given the benchmarking results, we proceeded to the final pre-
study step of considering opportunities to collect additional 
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information to produce a more robust treatment effect estimate. 
For demonstration purposes, we assume a specific unmeasured 
confounder, denoted by U, was identified. Plans were then made 
to obtain patient level data on the unmeasured confounder at 
a limited number of investigational sites (e.g., chart reviews). 
These partial data are used below to provide additional sensi-
tivity analysis.

3.2   |   Analysis Stage

3.2.1   |   Treatment Effectiveness Analysis

As detailed in the Appendix  S1, we conducted Targeted 
Maximum Likelihood Estimation (TMLE) to estimate the effect 
of treatment on 1-year pain severity using only the measured 
baseline covariates to control for bias (ignoring the unmea-
sured confounder U). The estimand of interest was the aver-
age treatment difference in change in pain severity for the full 
population (ATE) assuming no further effect following early 
discontinuation of the treatment. Analyses were conducted 
using the TMLE R-package [46] and R-code is provided in the 
Appendix S1. Results showed a statistically significantly greater 
mean pain reduction in Opioid treated patients on the BPI-Pain 
scale (−0.37 [−0.64, −0.10]).

3.2.2   |   Sensitivity Analysis: Tipping Point 
and Benchmarking Analyses

To assess the robustness of the findings, we began by evaluating 
how strong unmeasured confounding must be to change infer-
ences from the study and assessing the plausibility of the existence 
of such confounding. For demonstration purposes we present 3 
different tipping point and benchmarking analyses: the E-value, 
omitted variables, and simulation framework (R-code provided in 
the Appendix S1). For benchmarking we use our strongest mea-
sured confounder, baseline pain severity, as a priori we assumed 
an unmeasured confounder would not likely exceed the level of 
confounding produced by this variable.

Figure 5a–c displays the results. The E-values for the point es-
timate and lower confidence limit were 1.7 and 1.2. Thus, the 

existence of a binary unmeasured confounder with a RR of at 
least 1.2 with both treatment selection and pain severity could 
result in the statistically significant finding becoming non-
significant. The benchmarking exercise shows the observed 
statistically significant result is not robust to unmeasured con-
founding at the strength of baseline pain severity (with a RR of 
1.47 with treatment and 3.08 with outcome). That is, if an un-
measured confounder with the strength of confounding as base-
line pain severity existed, the observed effect would no longer be 
statistically significant.

The omitted variables and simulation framework contour 
plots (Figure  5b,c) display combinations of strength of con-
founding that could fully explain the observed result (areas 
above and right of the red dashed line) or eliminate the sta-
tistical significance (areas above and right of the blue dashed 
line). Using the Sensmakr R-package, the Robustness values 
for the treatment effect and lower confidence limits were 
0.077 and 0.012. Thus, an unmeasured confounder explaining 
only 1.2% of the residual variance in both the outcome and 
treatment models would imply that the treatment effect, ad-
justed for such confounding, would be consistent with the null 
hypothesis of no effect. As with the E-value approach, these 
benchmarking analyses show that, if unobserved confound-
ing is as strongly related to treatment and outcome as baseline 
pain severity, then it would cut the point estimate nearly in 
half (from −0.30 to −0.17), at which point the estimate would 
not be statistically distinguishable from zero at the 95% con-
fidence level.

3.2.3   |   Sensitivity Analysis: Using Additional 
Information

Given the potential lack of robustness from the initial sensi-
tivity analyses, we next consider whether incorporating addi-
tional information on the presumed unmeasured confounder, 
U, can provide greater clarity. As mentioned previously, the 
available analysis options depend upon the type of informa-
tion about U that is available. Here we demonstrate analyses 
given (1) information on U in a separate study (external); (2) 
information on U from a subsample of the patients in the study 
(internal).

FIGURE 4    |    REFLECTIONS study DAG.
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With information from U from a similar population of pa-
tients in the separate disease registry (see Appendix S1), con-
tour plots, quantitative bias analyses [16, 47] and Bayesian 
approaches can be used to sharpen our sensitivity analyses. 
Suppose the external registry shows a strength of association 
between U and treatment of R2 = 0.022 and between U and out-
come of R2 = 0.122. Plotting this external information onto the 
contour plots in Figure 5b,c suggests a true effect of approxi-
mately −0.10. Thus, the internal information successfully gen-
erated estimates closer to the null truth than either the original 
biased analyses or using the conservative “baseline severity” 
variable for benchmarking.

Lastly, we demonstrate the use of “internal” information on the 
unmeasured confounder for the sensitivity analysis. Table 2 dis-
plays the results of incorporating patient level information on 

U (here a subsample of data from select study sites amounting 
to 22% of the total sample) through multiple imputation, the 
Control Variable approach, and Bayesian regression modeling. 
Multiple imputation was performed using the MICE R-package 
and models leveraged all baseline and outcome information. 
For the Bayesian approach, the twin regression model was ap-
plied with relatively non-informative priors on all parameters. 
All three methods produced similar treatment effect estimates, 
ranging from −0.12 to −0.17. While the true data generating 
model had no treatment effect, the treatment effect estimate for 
our single random sample, when using the correct regression 
model with U and all other covariates in the model was −0.08. 
Thus, these internal methods produced estimates close to the 
best possible analysis from the data set, though not as close as 
the use of the contour plots and external information in the prior 
paragraph (−0.10).

FIGURE 5    |    Tipping point sensitivity analysis boundary plots: (a) E-value, (b) omitted variables, and (c) simulation framework.
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3.2.4   |   Summary of Pilot Study

In summary, the original analyses ignoring the unmeasured 
confounder suggested a statistically significantly greater re-
duction in pain severity for patients in the Opioid treatment 
group relative to the Non-Opioid group. However, following 
the sensitivity analyses suggested by our proposed guidance, 
we found the statistically significant result was not robust 
against unmeasured confounding at the strength of baseline 
pain severity. This was indicated by the low E- and Robustness 
values for the lower confidence limit, the benchmarking ex-
ercises with baseline pain severity, and with adjusted analy-
sis incorporating internal and external information showing 
a smaller and non-significant treatment effect estimate. 
Clinical judgment is still required to consider the possibility 
of an unmeasured confounders of this strength in this situ-
ation. Regardless, incorporating additional information on a 
potential unmeasured confounder from either external or in-
ternal data sources produced much smaller treatment effect 
estimates close to the true value.

3.2.5   |   Sample Size Simulation Study

A thorough comparison of the operating characteristics be-
tween various sensitivity analysis methods is complicated by 
the fact that different information is used by different methods 
and is beyond the scope of this work. However, important prac-
tical questions about the operating characteristics of this pro-
posed guidance document remain. One critical step in all study 
planning is ensuring sufficient sample size to achieve study 
objectives. Given the importance of this issue, we developed a 
simulation study based on our pilot study to understand the im-
pact of sample size on the operating characteristics of the pro-
posed sensitivity guidance.

Data generation models and parameters for the simulation study 
were the same as for the pilot study, with details provided in the 
Appendix  S1. Here we simulated 500 data sets with half, the 
same, and double the sample size as the single pilot example. For 
each simulated data set under the same data generation mech-
anism we then estimated the treatment effect ignoring the un-
measured confounding, computed an E- and Robustness value, 
performed benchmarking analysis, and computed an adjusted 
treatment effect using a 20% internal data sample using a control 
variable approach.

Table 3 presents the summary of the 500 simulations for the pri-
mary treatment comparison analyzed using TMLE. As expected, 
the treatment effect point estimate is largely unchanged as sam-
ple size changes. However, doubling the sample size produces 

narrower confidence intervals and results in a larger proportion 
of statistically significant treatment effects in the simulations 
(24%, 13%, 13% by decreasing sample size). Recall that there is 
no true treatment effect and observed treatment differences are 
largely due to unmeasured confounding.

The mean E-values are provided both for all 500 simulations 
(labeled “All”), where non-significant results were included 
in the mean calculation and given an E-value of 1, and the 
subset for which statistical significance is found (labeled 
“Significant”). The mean E-values across the full 500 sim-
ulations are all small and demonstrate a lack of robustness 
as should be observed in this situation where there is no 
true treatment effect. The mean E-values for the point esti-
mates are stable and driven by the large proportion of non-
significant treatment effect findings. However, among the 
statistically significant findings, a larger mean E-value was 
seen for the smaller sample size studies as compared to the 
larger studies (2.00 vs. 1.57). While this may appear contra-
dictory—that E-values would suggest more robustness for the 
smaller sample size studies—note that this is really driven by 
the size of the observed treatment effect. The significant stud-
ies with smaller sample sizes have a much larger treatment 
effects than the significant studies with larger sample sizes. 
Similar findings are seen with the Robustness value.

For the benchmarking exercise, we focused on the cases where 
the initial treatment effect analysis showed a statistically sig-
nificant treatment difference. We then used benchmarking to 
determine the proportion of times our benchmarked variable 
(baseline pain severity) would suggest the finding was robust 
(i.e., the benchmark variable also fell in the statistically signif-
icant area of the contour plot) or not. As the truth was a null 
treatment effect in this simulation, ideally the benchmarking 
would not be robust when the treatment effect analysis was 
significant. Results demonstrated the added value of utilizing 
a structured sensitivity analysis such as proposed here given 
that the majority of times the treatment difference was found 
to be significant, the sensitivity analysis would fail to conclude 
this was a robust finding. For instance, with N = 400, 8.0% of 
the time a false claim of a treatment effect would have been 
made by the initial standard analysis but in only 2.2% of the 
cases this would have been viewed as a robust result. As the 
sample size increased to 1600, the number of times the initial 
treatment effect analysis found a significant effect increased, 
but the percentage of confirmations by the sensitivity analyses 
decreased to less than 1%.

Lastly, we evaluated the impact of sample size on the use of an 
internal data set. As in the pilot study, the internal sample (with 
the information on the unmeasured confounder) was 22% of the 

TABLE 2    |    Summary of sensitivity analyses using internal information on U.

Method Adjusted treatment effect estimate Standard error 95% confidence interval

Multiple imputation −0.15 0.14 (−0.43, 0.13)

Control variable approach −0.14 0.26 (−0.65, 0.38)

Bayesian modeling −0.17 0.12 (−0.41, 0.07)
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full sample, and thus varied in proportion with the size of the 
full study. Multiple Imputation, the Control Variable analysis, 
and Bayesian Regression models were used to incorporate the 
internal subsample data and produce an updated treatment ef-
fect estimate in each of the 500 simulations. Table 4 provides the 
results of the Control Variable approach, which was representa-
tive of all methods.

Even with the smaller sample size, an internal subsample of 22% 
was sufficient to produce a nearly unbiased treatment effect es-
timate. This is consistent with the findings of Stamey et al. [27] 

who found that randomly sampled internal samples are effective 
even with small sample sizes. However, the impact on the confi-
dence limits (much tighter for the larger samples) of the adjusted 
treatment effect show the benefit of a larger sample. Also, the 
confidence interval widths, compared to Table 3, show a slightly 
greater uncertainty in our estimates after incorporating the infor-
mation on unmeasured confounding from the subsample. Thus, 
at the design stage of a study one could vary both the size of the 
study and internal sample via simulations to better plan for an ap-
propriate study size that would produce an adjusted estimate with 
desired confidence interval widths allowing detection of the ex-
pected treatment effect. Clearly, more tools for researchers to sim-
plify this assessment are needed. As a reminder, simply increasing 
the size of the main study will not reduce the size of the bias on 
the treatment effect estimate—so careful consideration should be 
given to other data in addition to the study sample size.

4   |   Section 4—Conclusions

Comparative observational studies should include pre-planned 
and quantitative assessment of the potential impact of unmea-
sured confounding. As reliance on such RWE by decision mak-
ers grows, so should consistent use of quality sensitivity analyses 
surrounding core statistical assumptions.

Here we proposed a structured approach to guide the evalua-
tion of potential bias due to unmeasured confounding both at 
the stage when developing a protocol and at the data analysis 
stage. In each stage we present 3 questions that help research-
ers address the potential impact of unmeasured confounding 
along with a toolbox of methods and links to software for im-
plementation. The goal at the design stage is to help forecast 
whether the planned study is likely to produce a causal treat-
ment effect estimate robust against expected levels of bias due 

TABLE 3    |    Simulation results: Treatment effects estimates, E-values, and benchmarking.

Sample size

Measure Half (N = 400) Same (N = 800) Double (N = 1600)

Treatment effect estimates (means)

Point estimate −0.16 −0.13 −0.14

SD 0.23 0.18 0.13

LL −0.76 −0.47 −0.39

UL 0.39 0.22 0.11

Proportion significant 0.13 0.13 0.24

E-values

Point estimate all; significant 1.10; 2.00 1.09; 1.78 1.14; 1.57

UL all; significant 1.03; 1.29 1.03; 1.27 1.05; 1.19

Benchmarking

Significant and robust 2.2% 2.3% 0.7%

Significant and not robust 5.8% 10.7% 23.3%

Note: Numbers represent mean values across the 500 simulations unless otherwise specified. Benchmarking results are from the Simulation Framework, other 
methods were similar.
Abbreviations: LL: Lower confidence limit; SD: Standard deviation; UL: Upper confidence limit.

TABLE 4    |    Simulation Results: Adjusted treatment effect estimates 
using the internal unmeasured confounding data and the control 
variable approach.

Sample size

Measure
Half 

(N = 400)
Same 

(N = 800)
Double 

(N = 1600)

Adjusted 
treatment effect 
estimates

Point Estimate 0.01 −0.01 −0.02

SD 0.31 0.20 0.14

LL −0.59 −0.41 −0.30

UL 0.61 0.39 0.27

Proportion 
significant

0.08 0.09 0.07

Note: Numbers represent mean values across the 500 simulations unless 
otherwise specified.
Abbreviations: LL: Lower confidence limit; SD: Standard deviation; UL: Upper 
confidence limit.
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to unmeasured confounding and to stimulate planning for ad-
ditional data collection if needed. At the analysis stage, the goal 
is to provide quantitative assessment of the robustness of the 
observed finding to potential unmeasured confounding, using 
all available information. We believe such an approach will pro-
vide greater information regarding the robustness of compara-
tive observational research to medical decision makers.

We demonstrated the use of this good practice guidance with the 
data simulated from an observational study (REFLECTIONS). 
While commonly used analyses found a statistically significant 
treatment effect, sensitivity analyses showed that the results 
were not robust to potential unmeasured confounding at the 
strength of the largest measured confounder (baseline pain se-
verity). Incorporating additional information on an identified 
unmeasured confounder enabled more accurate benchmarking 
and adjusted treatment effect estimates close to the true treat-
ment effect.

The simulation study also assessed the impact of study sample 
size on the operating characteristics of our sensitivity analy-
sis guidance using the setup for the simulated REFLECTIONS 
data. Results demonstrated that the benchmarking and inter-
nal data approaches from the guidance would have consis-
tently suggested lack of robustness of any estimated treatment 
effect. Use of the guidance led to the correct inferences in 
this simulation, since there was no true treatment effect. 
Simulations involving the use of additional data produced near 
unbiased treatment effect estimates even with half the sample 
size of our pilot study. The simulations also highlighted that 
more tools are needed to help researchers at the design stages 
to plan for sensitivity analyses, such as generating simulations 
to determine how much internal or external data are necessary 
to produce a robust finding in the presence of some level of un-
measured confounding. Of course, increasing the sample size 
will not erase issues with bias.

We note that this work is not without limitations. First, we 
offer a single application; greater use of this guidance will 
likely bring refinement. For instance, the internal Supporting 
Information was beneficial in our example but may not be 
sufficient in every situation. Further, reliable information on 
confounding in even a small subsample will not always be 
available outside of simulated data settings. Our toolbox will 
need to change over time as additional methods and software 
options become available. We did not demonstrate all poten-
tially useful methods, such as those that employ identification 
strategies that side-step the requirement of “no unmeasured 
confounders” in favor of other demanding assumptions (e.g., 
negative controls or instrumental variables analyses). Our sim-
ulation study evaluated the impact of sample size on use of the 
guidance but was not a thorough evaluation of other factors 
such as effect size and level of confounding. Other types of re-
search questions, such as those addressed in non-inferiority 
studies and the use of real-world controls for clinical trials, 
have not been addressed here. While not directly applicable 
and would require modification (such as addressing database 
ignorability in the use of real-world controls) [48], we believe 
the principles applied here may prove useful for future re-
search for settings such as real-world controls.

Unmeasured confounding is just one of several assumptions 
required for causal inference and we recommend a careful 
evaluation of the validity of all assumptions. We focused on un-
measured confounding given its potential to cause significant 
bias and the under-utilization of sensitivity analyses for this as-
sumption—though we acknowledge that focusing on a single 
type of bias potentially results in overconfidence in any robust-
ness findings. Lastly, in the DAGs we have oversimplified by 
considered each potential confounder as measured or not, while 
in practice some may be measured with substantial error or have 
substantial missing data [37].

In summary, consistent application of quantitative sensitivity 
analyses will provide decision makers with more reliable infor-
mation on the robustness of RWE and will lead to greater ac-
ceptance of quality RWE and ultimately better patient outcomes. 
Our hope is that this work will accelerate the growing trend to-
ward consistent and high-quality application of quantitative sen-
sitivity analyses for unmeasured confounding.
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